
Journal of Statistical Physics, Vol. 58, Nos. 1/2, 1990 

Simulated Annealing and Quantum 
Detailed Balance 

Alberto Frigerio 1 

Received April 4, 1989 

The analogue of simulated annealing is considered for time-inhomogeneous 
evolutions of a yon Neumann algebra of operators, whose instantaneous 
generator at each time t satisfies the quantum detailed balance condition with 
respect to a faithful normal state which depends on time through a suitable 
cooling schedule. Convergence to the (nonfaithful) limiting state is proved under 
the usual kinds of assumptions. The approach is interesting in view of possible 
applications to stochastic Ising models and to Boltzmann machines. 
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1. I N T R O D U C T I O N  

Simulated annealing is a stochastic algorithm to drive a fictitious physical 
system to a state of minimum energy; it has been applied as a general-pur- 
pose method to various kinds of global optimization problems. (s'lm~ 
If the system is in state x at time t, a new state y is chosen in the 
state space X with probabili ty qo(x, y)-qo(Y, x). The energy difference 
U(y)-U(x)  is computed, and the system actually moves from state x to 
state y with probability (conditional upon y being chosen) 1 if U(y) - U(x) 
4 0 ,  and with (conditional) probability exp{-~( t )[U(y)-U(x)]}  if 
U(y)-U(x)>0.  If /~(t) were constant=/~,  iteration of this procedure 
would drive the system to its Gibbs distribution corresponding to the 
energy function U at inverse temperature /L By letting/?(t) ~ ov as t ~ oo 
one hopes that the system will be eventually driven to a state of minimum 
energy. 

If one were to set /~= +00 from the beginning, then only energy- 
decreasing transitions would be allowed, and the system could end up in a 
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local minimum of U which is not a global minimum. One may also 
intuitively think that the probability of escaping (in a single attempt) from 
a local minimum of (suitably defined) depth d when the inverse tem- 
perature is fl is of the order of exp(-f ld) ,  and results of this kind can be 
actually proved. ~17'19) Then one must not reduce the temperature l/flU) too 
quickly (the system must be annealed, not quenched). In several 
papers ~1~ it has been shown that a cooling schedule of the form 
/~(t) = ( l / c ) log ( t+  1), where c is a suitable constant (which may depend on 
the paper) is sufficient to obtain approach to the set of states of minimum 
energy; in ref. 17 a necessary and sufficient condition has been given. 

The present paper grew out of an attempt to understand the paper by 
Holley and Stroock. (19) There the proofs of convergence of the annealing 
algorithm are based entirely on consideration of the Dirichlet forms 
associated with the generators L e (fl > 0) of the Markov semigroups deter- 
mined by the transition rates 

q~(x, y)=qo(x, y)exp{-f l[U(y)-  U(x)] + } (yCx) (1.1) 

In this attempt it was discovered that those proofs (at least those based on 
estimates in L2-norm) carry over to the situation where the algebra of func- 
tions on a finite state space X is replaced by a von Neumann algebra d// 
of operators on a separable Hilbert space 2(( with a cyclic and separating 
vector ~b; the Gibbs distribution at inverse temperature fl is replaced by the 
state #~ on ~/' determined by t~(A)= (v~, Av~}, where v~ is given by 

v~={(~b, exp(-~H)O)}-~/2Jexp(-~H/2)(b, H = H * e ~  

J being the modular involution associated with the pair (Jr ~b); and, 
finally, L~ (/7>0) becomes the generator of a (quantum) dynamical 
semigroup (16'22/ on J/g satisfying the (quantum) detailed balance 
condition (~'2~'251 with respect t o / ~ .  This allows us to prove some results on 
approach to equilibrium for time-inhomogeneous irreversible quantum 
evolutions, thus extending the results of refs. 7, 8, 27, and 28 for quantum 
dynamical semigroups. 

It may be noted that those proofs are quite similar to the ones existing 
in the literature concerning the Langevin algorithm, (2'6"12'14) a variant of 
simulated annealing involving diffusion in Na with decreasing temperature. 

The potential interest of having a version of simulated annealing for 
quantum dynamical evolutions is the following. What is now called a 
Boltzmann machine ~8) is essentially a (finite) Ising model with Hamiltonian 
of the form 

H= --�89 Z wu~icrJ+ ~ 0iaj (1.2) 
i , j  j 
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undergoing a sort of time-dependent Glauber dynamics. (15) Ising models 
and their Glauber dynamics have been often imbedded into quantum 
systems (4"261 evolving under quantum dynamical semigroups, (24) and it is 
hoped that the viewpoint of time-inhomogeneous quantum irreversible 
evolutions may prove useful in this connection. It should be noted that, in 
spite of the similarity of the name, this approach has nothing to do with 
"quantum annealing, ''(3) where the quantum tunnel effect is used in place 
of thermal fluctuations to allow the state of a system to escape from local 
minima. 

The paper by Holley and Stroock (19~ deals with a continuous-time 
version of simulated annealing, with a cooling schedule t ~ /~( t )  given by 
a differentiable function; the same is true for the papers on the Langevin 
algorithm. (2'6a2'14) I have found it more convenient to consider a piecewise 
constant function /~(t) with jumps. As a bonus, the method becomes 
applicable to simulated annealing in discrete time, which is generally used 
in applications. Potentially more important than the proof of approach to 
a state of minimum energy is then an upper bound on the probability of 
being away from the minimum after n iterations. 

The paper is organized as follows. Some preliminary notions are 
reealled in Section 2, where also the necessary notations are developed. The 
general theory is described in Section 3 in abstract form. In Section 4 
I apply this theory to the classical case, both in continuous and in discrete 
time; one of the proofs, being technical, is deferred to an Appendix. 
I describe the quantum case in Section 5; after a brief general discussion, 
I concentrate on a special class of time-inhomogeneous evolutions of a 
finite-dimensional matrix algebra, for which a complete parallel of the 
discussion of the classical case can be given. 

Some partial results on simulated annealing for time-inhomogeneous 
quantum evolutions have been already described in ref. 9. Applications to 
Ising-type models (or, more ambitiously, to Boltzmann machines) will be 
given in future publications. 

2. NOTATION A N D  PRELIMINARIES 

Let J/l be a yon Neumann algebra of operators on a separable Hilbert 
space ~ ,  with a cyclic and separating vector ~b. Denote by ~t the faithful 
normal state on ~ defined by y ( A ) : =  (~b, A~b), A e ~ ,  by {crt: t e  R} the 
associated modular automorphism group, and by J the modular involution 
on ~ associated with the pair ( ~ ,  ~b). For the sake of notational clarity in 
applications, the norm of ~ will be denoted by II. [I, whereas the norm of 
2(  will be denoted by II-II 2. Although J/g will be finite-dimensional and # 
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will be a tracial state in most applications, the proofs in this and the 
following section do not depend on these assumptions. 

Let H be a self-adjoint element of ~ ' .  In order to avoid trivialities, it 
will be assumed that H is not a multiple of the identity. Define a 
family {#~:fl~ [0, ~ ) }  of faithful normal states on d /  as follows. Let 
{ V(fl): fl~ [0, ~ ) }  be the semigroup of self-adjoint bounded operators on 

defined by 

V(fl) := Jexp ( - f lH)J ,  fl6 [0, ~ )  (2.1) 

Note that V(fl) belongs to the commutant d//' of ~//. Let also 

Z(fl) := #(exp(-f lH)) = (~b, exp ( - f i l l )  ~b) = (~b, V([3) (~) (2.2) 

for all fl in [0, ~ ) .  Then define p~ on d / /by  

/ t~(A):= Z(fl) l (V(fl) fb, A(~) 

= Z(/~) - t  (V(/3/2) ~b, V(/~/2) A~b) 

=Z(/~) ~ (V(fl/2)(~,AV(fl/2)~), A ~ J g  (2.3) 

In the special case that H is invariant under or,, /z~ reduces to 

#~(A ) = #(A exp( -/~H))/#(exp( - /~H)) (2.4) 

Note that #o = P. 
The GNS representation of Jg associated with ~tp can be identified 

with the identity representation of J// acting on Y ,  with cyclic and 
separating vector 

/),6 :=  Z(fl) -1/2 V(j~/2)~ (2.5) 

A normal state p' on Jg is majorized by a scalar multiple of ~ if and only 
if it can be expressed in the form 

#'(A) = (JBJv~, Av~), A E ~# (2.6) 

where B is a positive element of J/g satisfying 

(JBJv/3, vp)= Z (~ ) - l ( exp ( -~H/2 )  (~, B exp(--~H/2) ~b ) = 1 (2.7) 

By adding to H a suitable constant, which drops out in the expression 
of p~, we may (and do) assume, without loss of generality, that H is non- 
negative and that the infimum infa(H)  of its spectrum a(H).is 0. Then, 
upon letting h := ][HI], we have 

{0, h} _~ a(H) ~ [0, h] (2.8) 
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We shall also assume that the limit 

y ~ ( A ) : =  lim /@(A) (2.9) 
f l~oo 

exists for all A in J/g, so that it defines a state #o~ on J{, not faithful (in 
general), and not necessarily normal. A special case in which the limit (2.6) 
exists and defines a nonfaithful, normal state is the situation in which 
0 = inf a(H) is in the point spectrum Gp(H) of H; then we have 

#~(A) = {P0~b, APoO)/{PoO, PoO) (2.10) 

where Po is the projection onto the eigenspace of H corresponding to the 
eigenvalue 0. 

All the considerations of the present section could be extended to the 
case where H is a nonnegative, self-adjoint, unbounded operator affiliated 
with J//; however, we shall need the boundedness of H in the next section. 

For each fl in [0, oo), let L~ be the generator of a uniformly con- 
tinuous semigroup { T~: t s ~ + } of completely positive, identity-preserving 
normal linear maps of Jg into itself (a dynamical semigroup on J/L). Assume 
that the detailed balance condition ~1'21'2s) 

#~(AL~(B))=#~(LI~(A ) B), A, B6ML (2.11) 

holds. Then we have also 

#~(AT~(B))=y~(T~(A)B), A, BEML; t ~  + (2.12) 

The above equality is equivalent to 

{V(fl/Z)A*(~, V(fi/2) T~(B)(J) = {V(fl/2) T~(A*)~, V(fl/Z) B(~) (2.13) 

In particular, #~ is invariant under T~. 
We define the operator S~ on ~'U by 

S~[V(fl/2)A(~] :=  V(fl/2) T~(A)(~, A~Jg  (2.14) 

which extends to a contraction on ~((, since V(fl/2) J/{(J = ju{ and 

II s~[  v(fl/2) A~b] II 

= { V(fl/2)T~(A)O, V(fi/2) T~(A)O) 

= Z(fl) y~(T~(A*) T~,(A)) 

<<, Z(fl) #~(T~(A*A)) 

= Z(fl) #~(A*A) 

= II V(fi/2) AOIr~ (2.15) 
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where we have used the Kadison-Schwarz inequality for the completely 
positive map T~ and the invariance of #~ under Tt ~. 

Equation (2.13) tells us that S~ is self-adjoint in of.  It is clear from the 
definition (2.14) that {S,~: t e  E + } is a semigroup, and also its strong con- 
tinuity in t is easily proved. Then there exists a nonnegative self-adjoint 
operator G~ in S such that 

S(=exp(-G~t),  t e e  + (2.16) 

The dense subset V(/~/2) Jd'~b of ~ is a core for G~, and we have 

G~V(~/2)AO= -V(fl/2)L~(A)O, Aed/t (2.17) 

The Dirichlet form Er associated with G~ is given by 

E~(A, B) = - -Z(f l ) - l (V(f l /2)  A~b, V(/~/2) L~(B) (;) 

= -#~(A*L/~(B)) 

= �89 B)), A, B e Jg (2.18) 

where D~(-,-) is the dissipation function ~22~ of L~, defined by 

D~(A, B):= L~(A*B)--L~(A*) B-A*Lr (2.19) 

Let us make the following spectral gap assumption. (19) Let 

F(/~) : = inf{E~(A,A):Aeo//g,#~(A)=O,#~(A*A)=I} (2.20) 

so that 

E~(A,A))>~F(fl)#a([A-#~(A)]* [ A - # a ( A ) ] ) ,  AeJ /g  (2.21) 

It will be assumed that F(/~) is strictly positive. This implies that the 
eigenspace of G~ corresponding to the eigenvalue 0 is one-dimensional [-the 
multiples of V(/?/2) ~b], and that the rest of the spectrum of G~ is contained 
in [F(fi), + ~ ) .  

It is often the case in applications that L~ has a limit Lo~ as/3 ~ o% 
and that L~ is the generator of a dynamical semigroup on J/l, admitting 
#oo as an invariant state; however, in general no spectral gap condition will 
hold for L~ and the invariant state for Lo~ will not be unique, in general. 

3. S I M U L A T E D  A N N E A L I N G  

In the present context, simulated annealing is the following procedure. 
Let {/~k: k = 1, 2,.. } be an increasing sequence of positive numbers (inverse 
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temperatures), diverging to +0% let { t k ' k = l ,  2,... } be a sequence of 
positive numbers (times), and consider, for all positive integers n, the 
expression 

(JBJv~,  T ~ I T ~ . . .  A t / / /  (3.1) 

where B is a positive element of J/{ such that 

(JBJv~,  V~l > = 1 (3.2) 

(3.1) is the expectation value of the observable A e J{ in the state evolved 
from the initial state (JBJv~,  (.)V~l > under the time-inhomogeneous 
evolution determined by L~k in the time interval 

k 

(Sk l, Sk], where Sk '=  ~ tj, for k = 1, 2,..., n. 
j = i  

The question is whether the limit of (3.1) as n--* oo exists and equals 

~oo(A). 
The problem will be rephrased in the Hilbert space Jd, introducing 

some shorthand notation. For each positive integer k, define self-adjoint 
operators Sk, Rk, k+l on Y by 

Sk "= S,~[ (3.3) 

Rk, k+ 1 : =  Z([3k)-l/2 z(f lk+l)l /2 r((f lk+l--[3k)/2) -1 (3 .4 )  

and vectors Vk, Uk in Y by 

Vk := Z(fik) -1/2 V(flk/2) 0 = V~k (3.5) 

Uk := SkRk-  1.k''" SzR1, 2S1JBJvl (3.6) 

(u 1 "= SIJBJvl)  

k o m m a  3.1. With the above notation, (3.1) can be rewritten as 

(S=R= l,n ""S2RI,2S1JBJvl ,  A v , )  = (u=, Avn) (3.7) 

Proo[. F o r j = l  ..... n - 1  let 

Aj := r ~j+, r '~j+2... T~,~(A) s ~ (3.8) O+l tj+2 
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Then 

(3.1) = (JBJv#l, T ~ tltxxXlUfll) [by (3.8)] 

= Z ( ] ~  1 ) - 1/2 ( jOJv l  ' Tfl l l (A I ) V(fil/2 ) q~ ) 

= g ( / ~ l )  - 1 /2  (JOJl)l ,  V(fll/2) rt~,l(A1) ~b) 

[since V(fll/2) e Jg'] 

= Z(fl~) - m  (JBJv~ Sa~V(fl~/2) A 1 ~)  

= Z ( ] ~ l )  - 1 / 2  ( V ( f l l / 2 )  S iJBdv l ,  Alq~) 

= Z(fl2) -1/2 (V(fl2/2) R1,2S1JBJvi, Alq~) 

= Z(fl2) -1/2 ( g l ,  231JBJl)l, V(fl2/2) Thtnt=t,,2J 0 > ~ 

[by (2.5)] 

[by (2.13)] 

[by (3.3)] 

[by (3.4)] 

[by (3.5) and (3.8)]. Now we are ready to apply (2.13) once again. The 
argument can be repeated as many times as needed, to be concluded as 
follows: 

( 3 . 1 )  = Z([Jn) -1/2 ( R  n _ 1,n''" S2R1,2S1JBJvl,  V(fln/2) T~,2(A) (~) 

= Z([~n)-1/2 <R n _ ,,n' '" 3281,231SBSo1, S~t; V(fin/2) A ~ )  

= Z(fln) -1/2 ( S n R n -  1,n''" S2R1, 2S1JBJvl,  V(fln/2) A(J) 

= ( S n R n -  1,n " ' "  SzR1,2S1JBJvl ,  Avn)  

as claimed. | 

It is clear that we have to control the differences 

I ( u . , A v . ) - ( v . , A v . ) I  

~< Ilun--v.ll2 IIAv,[Iz 

= N u , -  v,112 Up,(A*A) ~/2, A ~, /g  (3.9) 

I . e m m a  3.2. For  all n = 1, 2,... we have 

( u . , v ~ ) = l  (3.10) 

and for all n = 2, 3 .... we have also 

(Rn_l,nUn 1, V n ) = l  (3.11) 
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Proof. For  n = l  we have (ul,  v l ) = ( S 1 J B J v l ,  V l ) = l ,  since $1 is 
self-adjoint and leaves vl invariant,  and (3.2) holds. For  n > 1 we have 
un=S.Rn_l,nu. 1, so that  

(Un, V n ) = ( U n _ l , R n  1 ,nSnvn)=(un- l ,  Rn l ,nVn)=(Un--l ,V.  1) 

Then (3.10) follows by induction. We have also 

(R~_l,.un 1 , v n ) = ( u ~ - l , R .  1 , . v ~ ) = ( u .  1, v n _ l ) = l  II 

L e m m a  3.3.  For  all n = 2, 3,... we have 

I[Un-Vn[I2 

~ < e x p [ - F ( 3 n )  t n ] ( l l R ~ _ l , ~ l l ' ! l u . _ l - v ,  l l l 2+bn  1) (3.12) 

where 

We have also 

�9 2 b . _ i  = I[(Rn 1.n--1)VnII 

= {llRn 1,nV.--tN2-- 1} 1/2 

=--- { Z(2fln- l - fin) Z(fln) Z(fln-1) 2__ 1}1/2 (3.13) 

where 

bn l=HRn 1,nV~_l-vnl lR=l l (R 2 1.~--l)Vnl[2 

Ilul - v1112 < exp[  - F(/~I) t l ]  [IJBJvl  - viii 2 (3.14) 

ProoL We have  

u . - v n = S n R n _ l , , , u n _ l - v n = S . ( R .  1.nUn--l--Vn) 

By Lem ma  3.2, Rn_l,.u ~_ 1-v,,  is o r thogonal  to v~. Then, by the spectral 
gap assumption,  we get 

[lu~ - v~ll 2 ~< exp[  - F ( / ~ )  G]  II R,,_ l,.Un-- I -- Vnll 2 

In turn, we have 

llR~_ l,nUn_ l - vnl[2 

<~ IlR~_l,.(Un_l-V~_l)l[2 + I 1 R . _ i , n v ~ _ l - v ~  

~< IIRn 1,nll'llun_l-V~_lll2+b~ 1 
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It remains to prove that bn_l can be rewritten in the alternative forms 
appearing in (3.13). This can be obtained by a straightforward computa- 
tion of b]_ l ,  recalling that (vn, v n ) =  1 for all n and using the explicit 
expression of Rn_ 1.n. 

Finally, the proof of (3.14) is immediate from the observations that 
Ul=SIJBJvI ,  v l = g l V l ,  and ( ( J B J v l - v l ) ,  U 1 ) = 0 .  m 

Let us now introduce some additional notation (we recall that 
h :=  [[Hlr). Let 

al := F(fll) tl (3.15) 

ak: = F(flk) tk--( f lk-- f lk_,)h/2,  k = 2 , 3  .... (3.16) 

b0 := rIJBJvl--viii2 (3.17) 

br:= {Z(2f lr - - f l r+l)Z( f lr+l)Z( f lr ) -2-1}  1/2, r = l ,  2 .... 

[the same as (3.13)] 

dn := IlUn--V~II2, n =  1, 2 .... (3.18) 

I . emma  3.4. With the above notation, we have, for all n = 1, 2 ..... 

dn~<r~ ~ exp - k =  l ak  br (3.19) 

ProoL Since H is assumed to be nonnegative, Z(fl) is a non- 
increasing function of fl, so that Z(fln 1) 1/2 Z(fl~)l/2 < 1 and 

IlRn 1,nll <~ [lexp[ (fln - fl~_ l ) g /2  ] ll = exp[ (fl~ - fl~ 1)h/2] 

Hence (3.12) of Lemma 3.3 can be rewritten as 

d , < , e x p ( - a , ) d ,  l + e x p [ - F ( f l , ) t , ] b ,  1 

which implies also 

d,<~exp(-a,)(d ,  ~-+-bn_1) (3.20) 

since a, <<. F(fl,) t,. 
For n = 1, (3.19) holds, since it reduces to (3.14) of Lemma 3.3. Using 

(3.20), we can easily prove (3.19) by induction. | 

T h e o r e m  3.5. Suppose that there exists a constant C, 0 <  
C < +o% such that 

n ~ l e x p ( -  ~ ak) br<~C for n sufficiently large (3.21, 
r=0 k=r+ l  
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Let A ~J r  such that #o~(A*A) =0.  Then 

lim ( J B J v ~  T & T ~  �9 ~" . . . .  ' n " ' T , . ( A ) v l h  ) = 0  (3.22) 

ProoL By Lemma 3.1, Lemma 3.4, (3.9), and (3.21), we have 

I ( JBJv~ ,  r~r&,~ ,2 " T~,](A) v/h)--/z~.(A)l  <~ C#r 1/2 (3.23) 

By assumption, Iz~.(A*A) [-hence also #a.(A)] converges to 0 as n--* oo. 
The result follows. I 

The above theorem corresponds to a result of Holley and Stroock, ~ 
implying that, under assumption (3.21), the probability that the time- 
evolved state has energy strictly above the global minimum vanishes in the 
limit as t ~ oe. 

It is important that C can be chosen as small as possible. In this 
respect, note that the br for r ~> 1 are small if the inverse temperature is 
increased slowly, whereas bo depends on the initial state and not on the 
cooling schedule, and can be large. For  example, we shall see in the 
following section that in the classical case, where one tries to minimize the 
energy function on a finite state space with N points, bo is of the order of 
N 1/2. Hence, in order to have the possibility of choosing C small, we must 
have(10,13,14,17) 

a k ~  +oo a s n ~  +oo (3.24) 
k = l  

Under some stronger assumptions on the sequences {ak} and {br}, 
one can show that the annealing algorithm converges to the uniform 
distribution on the set of global minima of H. As an illustration of the kind 
of results that can be obtained, one can prove the following. 

Theorem 3.6. Assume that 

ak >/a > 0 for all k sufficiently large (3.25) 

br--, 0 as r ~  (3.26) 

Then 

lim (JBJvB~ , T ~1T~2 . T ~ ~  , , - ,2  "" ,~ v~l) =/zoo(A) (3.27) 
n ~ o c  �9 

for all A ~ Jr  for all B such that (JBJv~l , v~ ) = 1. 
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ProoL By (3.9) and (3.18), it suffices to prove that dn-~ 0 as n --, oo. 
Indeed, let 

r o ' =  max{k: ak<a} 

Ao '=  max { ~ (a-ak):r<ro, O} 
k = r + l  

Then, for all n = 1, 2 ..... and for all r = 0,..., n - 1 we have 

e x p ( -  ~. a~)<~exp(Ao)expE-(n-r)a ] 
k = r + l  

and, by Lemma 3.4, 

n 1 

d,~<exp(Ao) ~ exp[-(n-r)a]br 
r = 0  

Since b,---,0 as n--, ~ ,  for each positive 6 there exists n6 such that 
(0~<)br~<6 for n>n6. Then, for n>n6 we have 

f n ~ - -  1 
d, ~< exp(Ao) ~ r_~o__ exp[ - (n - r) a] b r 

" '  } 
+6 ~ exp[-(n-r)  a] 

r = t t  6 

n6 i 

=exp(Ao) exp[-(n-n~)a] ~ exp[-(n~-r)a]br 
r = 0  

"-"~ )} 
+6 ~, exp ( -ka  

k = l  

nd I 

<exp(Ao) exp[--(n-n~)a] ~ e x p [ - ( n ~ - r )  aJbr  
r = 0  

+ 6 / [ 1 - e x p ( - a ) ] }  (3.28) 

In the limit as n ~  oo for fixed n6, (3.28) tends to 
fi exp(Ao) / [1 -exp( -a ) ] .  Since 6 was arbitrary, the result follows. | 

Remark. It seems that the above approach can be adapted to a more 
general situation in which H is not fixed, but changes at each step (say, 
Vk := exp(--flkH~/2) q)/Qb, exp(--fi~Hk) qt}, {Hk} being a sequence of 
self-adjoint elements of ~ ) ,  provided suitable assumptions hold. This 
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should provide a technique for proving convergence of "estimation and 
annealing" algorithms, as in ref. 31. This problem, which is of interest for 
applications to Boltzmann machines, is currently under investigation. 

4. A P P L I C A T I O N S :  T H E  C L A S S I C A L  CASE 

Let Jg be the algebra of all complex-valued functions defined on a set 
X having a finite number N of points, equipped with the supremum norm 
IIfI[ := supx~x If(x)[, f E J g .  Let /~ be the normalized counting measure 
on X,/~(x) :=  1/N for all x in X, and let x (  be the Hilbert space L2(X, d#). 

coincides with J//L as a set, and its norm [[. H 2 is given by 

11f l122=( f , f )=  I f t 2 d ~ = ~  ~ If(x)[ z, U ~ X  
X E X  

We denote again by p the faithful state on JCL defined by 

1 

where ~b(x)= 1 for all x. The modular automorphism group is trivial and 
the modular involution is just complex conjugation. 

Let U: X ~  R be a function, and let H e  JCL be defined as U - m i n  U, 
so that h : =  IlHll=max U - m i n  U. For all /7 in N+, we have, from 
Section 2, 

[ V(/3) f ] ( x )  = f ( x )  exp[ - ~H(x)/2] (4.1a) 

1 
Z(/3) = ~ x~X e x p [ - / 3 H ( x ) ]  (4.1b) 

1 
f (x )  exp[ - /3H(x) ]  (4.1c) 

I~ ( f  ) = NZ(fl ) x ~ x 

v#(x) = Z(fl) l/Z e x p [ - f l H ( x ) / 2 ]  (4.1d) 

1 
#~( f )  NZ(oe) ~ f (x )  (4.1e) 

x ~ S  0 

where 

S O := {x~X: U ( x ) = m i n  U} (4.2) 

is the set of global minima of U, and where NZ(oe):= l i m ~  NZ(/3) is 
the cardinality of S ~ 
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As initial state, one usually considers a situation in which the system 
is in some arbitrary configuration Xo with probability 1; this can be 
described by 

# ' ( f )  := f(xo) = (JBJvl, fvl }, f e  M (4.3) 

where B is the multiplication operator defined by 

B(x) : = 6x.xoNZ(fll) exp[fil H(x) ]  (4.4) 

The dI-H2-norm of the vector u0:= JBJv 1 (=By1) in sf" is given by 

Jr u0Jl2 = [Z(fll) N] 1/2 exp[fll H(xo)/2] (4.5) 

For each positive, real fi, let qa(-,-) be a transition probability func- 
tion on X, i.e., 

q,(x,y)>~O, x, y s X ,  ~ q , ( x , y ) = l ,  x ~ X  
y ~ X  

Let us make the following assumptions: 

(i) Irreducibility. For each /~ ~ (0, ~ ) ,  q~(., .) is irreducible, i.e., 
for each x, y ~ X ,  there exists a positive integer n such that the matrix 
element q(~n)(x, y) of the nth power of the matrix q~(.,.  ) is strictly positive; 

(ii) Detailed Balance. For each/~ ~ (0, oo), 

e x p [ - f l H ( x ) ]  q,(x, y ) =  e x p E - f l H ( y ) ]  qa(y, x), x, y e X (4.6) 

(iii) "Uniformity". For any x, y e X, either q,(x, y ) = 0  for all 
f ie  (0, oe), or c~ 1 ~<max{q~(x, y), q~(y, x)} ~<c~2, where al,  a2 are strictly 
positive constants, independent of x, y E X, fl e (0, oe); 

(iv) Continuity. The function fl ~ q , ( - , . )  is continuous and has a 
limit q~(-, .) as fl--, oe. [Note that q~(. ,  .) is not irreducible if U has local 
minima which are not global minima.-] 

Two examples satisfying all the above assumptions are given below. 

Example I (The usual one). Let a symmetric, irreducible transition 
probability function qo( ' , ' )  be given, and let 

q~(x,y):= qo(x , y )exp[ - f l (U(y ) -U(x ) )+] ,  x C y ~ X  (4.7) 

where, for any real-valued function g, (g(x))+ := max{g(x), 0}; 

qa(x,x) := 1 -  ~ q~(x, y) (4.8) 
y: y ~ x  
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E~(f, g)= 

where 

Example 2 (As in refs. 11 and 18). Let q0( ' , ' )  be a symmetric, 
irreducible transition probability function with qo(x, x) = 0 for all x, and let 

q~(x,y):= qo(x ,y){ l+exp[ f l (U(y)-U(x))]}  1 x C y ~ X  (4.9) 

q~(x,x):= 1 -  ~ qp(x,y) 
y: .V v~ x 

= ~ qo(x, y){1 +exp[ - f l (U(y ) -U(x ) ) ] }  1 (4.10) 
y ~ X  

For each/3 in (0, ov ], define the maps Q~ and L~ on ~/~ by 

(Q/~f)(x) := ~ qr y ) f ( y )  f6J/g, x e X  (4.11) 
y~A" 

(L~f)(x) := Z q~(x, y ) [ f ( y ) - f ( x ) ] ,  fsJ/g,  x e X  (4.12) 
y e X  

Note that the term with y = x  drops from the summation (4.12) and that 
L~ = Q ~ - / ,  where I is the identity map. 

By ('4.6), L~ satisfies the detailed balance condition with respect to gp. 
The corresponding Dirichlet form is most easily obtained through (2.19); it 
is given by 

~, e~(x, y ) [ f ( x ) -  f ( y ) ] [ g ( x ) -  g(y) ]  (4.13) 
x , y ~ X  

1 
e~(x, Y ) ' -  /tp2NZ'~ e x p [ - f l H ( x ) ]  q~(x, y) = e~(y, x), x, y ~ X (4.14) 

The simulated annealing procedure of Section 3 can be described as 
follows. Let {sk: k = 0, 1, 2,... } be an increasing sequence of positive num- 
bers, with So = 0, let tk : = sk - sk 1, k = 1, 2 ..... and let fl(s) be a monotoni- 
cally nondecreasing function (the cooling schedule) defined on (0, ~ ) ,  with 
fl(s) ~ ~ as s ~ 0% which takes on a constant value flk on each interval 
(sk_ 1, s~] of length tk. Let {Ps.t: 0 ~< s ~< t ~ ~ } be the solution of 

d 
P~,,f = P~,,L,(t)(f), f e t i d  (s, t ~ sk) (4.15) 

with 1imago Ps, s+~=Ps.s=I for all s [including the sk where s~---~fl(s) is 
discontinuous]. Let also ps, t(x, y), x, y ~ X, be such that 

(P~.,f)(x)= ~ p~..,(x, y ) f (y) ,  f e ~ ,  x e X  (4.16) 
. v e X  
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Then the simulated annealing algorithm can be described by a Markov 
process { Y t : t e N  +} such that, for all 0 < t l <  .-. < t ,  eN and A, , . . . ,A,  
subsets of X, one has 

Prob[Y, ,eA1,  Y,2eA2,..., Y t ~ A ~ ]  

E E . - -E  
yI~AI y2GA2 yn~An 

PO, tl(XO, Yl) PtI,,2(Yl, Y2) '"  Pt,_,,,,(Y~- ~, Y,) 

(4.17) 

By irreducibility, the Markov semigroup Tff generated by L~ has only 
the constant functions as fixed points. Since ~,U is of finite dimension, the 
spectral gap assumption holds. An estimate of the constant F(fl) has been 
given by Holley and Stroock ~19) in the following way. For each pair x, 
y eX ,  a path pXy from x to y is a finite sequence {p~Y, xy pl  ,-.., p Y} 

In = n(x, y)] such that p~Y = x, p~Y = y, and q~(p~Y_ 1, P~Y) > O, k = 1 ..... n 
[by assumption (iii) the last inequality holds for all f ls  (0, oo) or for no fl]. 
By irreducibility, the set of paths pXy from x to y is nonempty for any x, 
y e X .  Let, for x, y e X ,  

m(x, y ) " =  min{(mkax { H ( p ~ Y ) } ) - H ( x ) - H ( y ) :  all paths pXy} (4.18) 

and let 

m := max{m(x, y): x, y e X }  (4.19) 

If x, y are such that m(x, y) = m, then either x or y belongs to the set S o 
of global minima of U. ~ Then m coincides with the maximum depth of 
a local minimum which is not a global minimum, as defined in ref. 17. The 
following theorem, proved in the Appendix, is a slight generalization of 
Theorem 2.1 of Holley and Stroock. (19) 

T h e o r e m  4.1, ~ Under assumptions (i)-(iv), there exist two 
strictly positive constants F x and F 2 such that 

F~e #m<~F(fl)<<.F2e-~m (4.20) 

In the following it will be assumed that rn is strictly positive, otherwise 
there would be no point in using simulated annealing. In analogy with the 
literature, I shall consider a cooling schedule of the form 

fl(sk) = (l/e) log(sk + 1 ), k = 1, 2 .... (4.21 ) 
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c being a (large) positive constant ,  which can be read in at least two 
convenient  ways: 

(a) 

(b) 

sk = k, tk = 1 

fl~ = fl(sk) = (1/c) log(k + 1 ), k = 1, 2 .... (4.22) 

flk = fl(sk) = k, sk = exp(ck)  - 1 

t k = s k - - S k  l = e x p ( c k ) [ 1 - e x p ( - - c ) ] ,  k = l , 2  .... (4.23) 

Tak ing  into account  (4.15) and writ ing just  F for F~, we have in case (a) 

ak ~ F k  m/c _ (h /2c ) [ l og (k  + 1 ) - log k ]  

>~ F k  m/c __ (h/2c) k ~ (4.24) 

and in case (b) 

a~ ) ire k(c- '~( 1 -- e ~') -- hi2 (4.25) 

T h e o r e m  4.2. Suppose  that  assumpt ions  ( i )-( iv)  hold. Then in 
case (a) the assumpt ions  of  Theo rem 3.5 hold if c > m, so that,  for any 
initial state Xo, we have 

lim P r o b [  Y, e X -  S ~ = 0 (4.26) 
t ~ c x 3  

Proof .  If c > m ,  then k l -role diverges as k--* +oo.  Fix a constant  
a > 0, and choose k large enough to have 

so that  

k I - m / c  ~ (a + h / 2 c ) / F  

a k >~ a /k  for k large enough (4.27) 

On the other  hand,  f rom L e m m a  3.3 we have the bound  

br<~HR~,r+l -  lll 

= Z ( f l r )  1 Z ( f l r  + l)  e x p [  (flr + 1 - f i r )  h i  - -  1 

~< exp[( f l r+  1 - fir) h i  -- 1 

since Z( f l )  is a nonincreasing function of fl (see the p roof  of L e m m a  3.4). 
By (4.24) we have f l r + l - - f l r < < . l / [ ( r + l ) c ] < l / ( r c ) ,  SO that,  letting 
b :=  2h/c, we obta in  the bound  

br<<.exp(h /rc ) -  l <<.br -~ for r large enough (4.28) 
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From (4.27) and (4.28) one can obtain the bound of the form (3.21) 
which is needed for Theorem 3.5. I present the argument as it would be if 
(4.27) and (4.28) were known to hold for all positive k and r; the general 
case can be handled with some extra complication. We have 

exp - ak b, 
r = 0  k = r + l  

~<b0exp - a  k 1 + b  ~ r - l e x p  - a  k - t  (4.29) 
k = l  r = l  k = r + l  

The first term on the rhs of (4.29) tends to 0 in the limit as n --, oe since 
Z~= 1 k 1 is divergent (note that this removes the dependence of the error 
on the initial condition). The second term is bounded, by Lemma 2.1 of 
ref. 10, or by the following explicit evaluation: Since 

k 1>~ x l d x = l o g ( n / r )  
k = r + l  

we have 

b ~ r -Xexp  - a  k -1 
r = l  k = r + l  

n - - I  n - - 1  

<~ (b/n)  ~ (n/r)  -1 e x p [ - a l o g ( n / r ) ]  = (b/n)  ~ (r /n)  " -~  
r = l  r = l  

f2 b x a - 1 dx  = b/a = 2h/ac | (4.30) 
n ~ o o  

T h o o r e m  4.3. Suppose that assumptions (i)-(iv) hold. Then in 
case (b) the assumptions of Theorem 3.6 hold if c > m, so that, for any 
subset A of X and for any initial state Xo, we have 

lim Prob[  Y, e A ] = card(A c~ S ~  ~ (4.31) 
l ~ o o  

P r o o L  Fix a constant a > 0 and choose k large enough to have 

e k~ . . . .  ) >~ (a + h /2c ) /F (1  - e ~) 

Then ak >~ a for k large enough. To prove that b, ~ 0, we consider, from 
(3.13), 

b,. = [Z(2fl~ - fir + ~) Z(flr +1) Z(flr) -2 _ 1 ] ~/2 

= [ Z ( r -  1) Z(r  + 1) Z(r) - 2 -  1] I/2 
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which tends to 0 as r ~ oe since Z(r) tends to a finite limit [card(S~ 
a s  r ----~ o0 .  | 

I conclude this section by sketching how the foregoing arguments have 
to be modified to become applicable to the case of discrete time. Consider 

lifn #'(Q)IQ'~22 ... Q}"(U)) (4.32) 

where now {tk} is a sequence of positive integers, and where Q~ is given 
by (4.11). The annealing algorithm for discrete time is described by a 
Markov chain { Yt: t = 0, 1, 2,...} with Yo = Xo and with transition (i.e., 
conditional) probabilities given by 

P r o b [ Y , = y l Y t  l=x]=q~( t~ (x ,y ) ,  x , y ~ X  (4.33) 

Since now we are dealing with iteration of maps at discrete time instants, 
we must get rid of possible periodicities. To this end, let us assume, in 
addition to (i)-(iv), the following condition: 

(v) Aperiodicitl/. For each fixed fl in (0, oe], the Markov chain 
determined by the transition map Q~ is aperiodic. 

In the cases of Examples 1 and 2 above, condition (v) may be already 
implied by assumptions (i)-(iv); however, I do not investigate this matter 
here. 

T h e o r e m  4.4. Suppose that assumptions (i)-(v) hold, and consider 
the simulated annealing algorithm for discrete time, with a cooling schedule 
of the form (4.21), with c>m.  Then, for any initial state Xo, we have in 
case (a) 

lira Prob[ Y, e X -  S ~ = 0 (4.34) 
t~oc? 

and in case (b), with tk given by the smallest integer which is not smaller 
than exp(ck) [ 1 - exp( - c)], 

lim Prob[ Y, ~ A ]  = card(A c~ S~ ~ 
t ~ o o  

(4.35) 

ProoL We may view Qa (fl ~ (0, oe ]) as a positivity-preserving linear 
operator on J~. Since Q~(1)= 1, the spectrum of Qe is contained in the 
closed disk of unit radius, and the only eigenvalue having absolute value 1 
is + ! (if not, the corresponding Markov chain would not be aperiodic). If 
we now define 

Sk(f  exp(- f i~H/2))"  ,k = Q~k(f) exp(--flkH/2) (4.36) 

822/58/1-2-23 
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we note that, as before, Sk is self-adjoint by (4.6). The eigenvalues of Sk are 
the same as the eigenvalues of Q}~: then the only one having absolute value 
1 is + 1, which is simple. The spectral gap F(f l )  is the second eigenvalue 
of - L p  = I - Q ~ ,  and tends to 0 as fl ~ oo. Eigenvalues of Q~ cannot 
accumulate toward - 1  as /? ~ oo; if not, Q~ would have the eigenvalue 
- 1 .  Then, for fl large enough the eigenvalue of Sk with absolute 
value nearest to 1 is [1- -  F(flk)] 'k, which is not larger than 
I-1 -- F e x p ( - -  f l km)  ] tk. 

Then all the arguments of Section 3 can be repeated, with the only 
modification that now ak is given by 

ak := tk Ilogl-1-- F(flk)] l -- (ilk -- ilk ~)h/2 (4.37) 

In the limit as fl ~ o% F(f i)  tends to 0 and I l o g [ 1 - F ( f l ) ] l  is asymptotic 
to F(fl); then we can repeat essentially the same arguments as in 
Theorems 4.2 and 4.3, to obtain the desired result. | 

The present results (the same as in ref. 19) are weaker than the conclu- 
sion of Hajek (Iv) that a necessary and sufficient condition for (4.26) to hold 
is that (in the present notation) Zk e x p ( - f l k m ) =  + 0% which is implied by 
(3.24). In particular, c = m ensures convergence. Hajek does not even need 
detailed balance, but only a much weaker reversibility condition. However 
the present approach, following ref. 19, has the advantages of providing 
bounds on the errors and of being easily adaptable to other situations 
(actually, it is quite analogous to the approach of the authors who have 
worked on the Langevin algorithm(2'6'12'14); see in particular Gidas (~4) for a 
discussion which is very similar to the present one). 

5. APPLICATIONS:  FINITE Q U A N T U M  SYSTEMS 

Let Jg be the von Neumann algebra ~ ( ~ o )  of all bounded linear 
operators on a separable Hilbert space ~o. Let ~ be the Hilbert space of 
all Hilbert Schmidt operators on ~o, with scalar product 

(u, v ) ~  := Tr~0[u*v],  u, v ~ "  

Then Jg may be identified with its left regular representation rc(Jr acting 
on s (  as 

~ ( A ) u : =  Au,  A e .//g, u ~ ~ f  

A faithful normal state # on ~ is determined by a positive trace-class 
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operator on -~o, with unit trace and with densely defined inverse. Denoting 
by ~b (eW) the positive square root of this operator, we have 

#(A) = Tr~0[~b2A] = (~b, A~b)~, A e ~  

The modular automorphism group a, is determined by 

~Tt(A)=O2itAO -2it, Aed/[ ,  t e n  

the modular involution J is the involution (*) on X ,  so that 

JA JBO = BOA*, A, B e il l  

In the following, all scalar products will be understood in ~,U and all traces 
on -~o. 

Let H be a self-adjoint element of ~ ' ,  let h := IIHtl, and assume that 
{0, h} _c a(H)c_ [0, h]. From Section 2 we have, for all positive, real/3, 

V(/~) u = u exp( - ~H/2), u e S (5.1a) 

Z(//) = @, exp(-/?H)~b) = Tr[~b 2 exp(- /~H)]  (5.1b) 

#~(A) = Z(/?)-1 (~b exp( - /?H),  A~b) 

= Z(/~) -~ Tr[~b exp ( - f i l l )  ~bA], A e Jg (5.1c) 

v r = Z(~ ) -1/2 ~b exp ( -~H/2 )  (5.1d) 

For the sake of simplicity, we shall assume that ~b and H commute, so 
that v~=v~(=Jv~) ,#r  for all A, and the modular 
automorphism group a~ associated with #~ = (v~,.  vB) is given by 

a~(A) 2it- -2it --v~Av~ , A e J # ,  t e ~  (5.2) 

If #' is any normal state on ~ ' ,  we have # ' (A)=Tr(pA) ,  A ~ J # ,  where p 
is a positive trace-class operator with unit trace (a density operator) on ~o. 
We may formally write 

#'(A) = Tr(v~ lpAvll) = (pv~  1, Ave)  

= (JBJv~, Avl~ ), A �9 Jg (5.3) 

where B := vblpv~l; for a dense set of normal states, B is indeed a boun- 
ded operator (an element of d/l). 

We recall from refs. 1 and 21 the general form of the generator Lr of 
a quantum dynamical semigroup T~ on Jr = ~(oVeo) satisfying the quantum 
detailed balance condition with respect to the state #e with density 
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operator v~= Z(f l ) - I  ~ exp(-flH)~b, omitting the skew-symmetric Hamil- 
tonian part (as in ref. 25). We have 

LE(A) = ~ {(V*AVj- �89 A]+) 
J 

+exp[-~j( f l )](VjAV* _ t , ~[VjVj ,A]+)} ,  A t  Jig (5.4) 

where [B, A] + := BA + AB, and where the ViE J/g, ~j(fl)~ [~, satisfy 

v~2Vjv2~ = e x p [ -  c~j(fl)] Vj, j =  1, 2 .... (5.5) 

The series in (5.4) are convergent in the ultraweak topology. The 
corresponding Dirichlet form can be most easily computed through the dis- 
sipation function D E of (2.19). Recalling the expression of D E from ref. 22, 
we get 

EE(A, B) 

= �89 {#e([Vj, A]* [Vj, B]) + exp[-c~j(fl)] #e([ V*, A]* [V*, B])} 
J 

= �89 Z {#E([VJ, A]* [Vj, B])+Ue([vEV*v~ 1, A]* [vEV*v~ ~, B])} 

J (5.6) 

It is also interesting to give the explicit form of the nonnegative self-adjoint 
operator G E on ~(6 such that S~=exp(--GEt ). For all u in the dense subset 
~'v~ of J (  we may write 

GEu = G~ G'eu (5.7) 
where 

a~ = �89 2 (v2vj+ Jv;~v,4v2~;'J 
J 

+ ~;' vj4 v2~;' + Jr? v j ) .  

=�89 Y~ {(v*vju+,vyv,)+exp[-~/B)](vjvy~+uv, v2) } (5.8) 
J 

and where 

Gila :=  1 2 (VJJt)fllvjvE J'+" Vff JvEVffT)fi 1J 
J 

+ v E 1VjvEJViJ+ v E V*v~IJV*J) u 

= • exp[-ej(fi)/Z ]( V*uVj + VjuV* ) 
J 

(5.9) 
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The state #p is invariant under T, ~. Recall from ref. 7 that it is the 
unique T~-invariant normal state and that 

weak-lim / ~ ' . T ~ = / ~  for all normal states y on Jr (5.10) 
t ~ o o  

if and only if 

{Vp V*:j=I,2,...,}"=Jg (5.11) 

This condition amounts to saying that the eigenspace of G~ corresponding 
to the eigenvalue 0 is one-dimensional (spanned by v~), and is a necessary 
prerequisite for the existence of a spectral gap F ( f l ) > 0  as in (2.20). In 
the present paper I shall not be concerned with the general problem of 
finding conditions ensuring the existence of F(f l )>  0 and estimates on its 
dependence on ft. When ~o is finite-dimensional, we have F(fi) > 0 if and 
only if (5.11) holds; then the theory of Section3 can be applied. ~ 
Estimates for the spectral gap of a generator satisfying the quantum 
detailed balance condition for some models of infinite quantum systems 
have been considered in ref. 30 and references quoted therein in connection 
with the problem of critical slowing down. 

In the remainder of this section I shall describe how a (fictitious) 
quantum system can be associated to a problem of classical simulated 
annealing as in Section 4, and I shall estimate the spectral gap for the 
corresponding class of generators. 

Let X be a finite state space with N points, and let U: X--+ R be a func- 
tion to be interpreted as energy. We may suppose that points x in X are 
arranged in a definite order, such that U(x) < U(y) implies x < y. Associate 
to X the Hilbert space Jgo = CN, spanned by the canonical orthonormal 
basis, denoted as {e~: x~  X}. Then ~ / =  M(~o)= M(N, C) is spanned by 
the matrix units {exz: x, y~X} such that exyez=fyzex. Let ~ be M(N, C) 
equipped with the scalar product (u, v ) =  Tr[u*v], and let ~b := N 1/21, 
so that/~ = (~b, .q~) is the normalized trace. The algebra of complex-valued 
functions defined on X can be embedded isomorphically into the sub- 
algebra ~ of ~ '  consisting of all diagonal matrices; the embedding, 
denoted by D(-), is given by 

D(f) := ~ f(x) exx (5.12) 
x ~ X  

Define H in Jr by 

H : =  D ( U - m i n  U) (5.13) 
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Then the state #~ is given by 

#8(A) = Tr[-exp(-  fill) A]/Tr[exp(-fill)],  A E ~ (5.14) 

It is clear that, for any function f on X, 

#~(D(f)) = #8. c, ( f )  (5.15) 

where #8,ct is the state defined by (4.1c). In the limit as fi--+ oo we have 
#8 -+ #~ ,  where 

#~(A)=Tr[PoA]/Tr[Po], A6dr (5.16) 

where P0 := Zx~sO exx is the projection onto the eigenspace of ~o corre- 
sponding to the eigenvalue 0. 

A classical simulated annealing algorithm is determined by a family of 
transition probability functions qn( ' , ' ) ,  fi ~ (0, oo), satisfying assumptions 
(i)-(iv) and by a cooling schedule fl(.). The corresponding quantum 
simulated annealing will be determined by the same cooling schedule fi(.) 
and by a family { Vj} of elements of Jg  defined as follows. Let 

J : =  { j : =  ( x , y ) : x , y ~ X , x < y , q ~ ( x , y ) # O }  (5.17) 

[independent of fl by (iii)], and define 

Vj := qn(Y, x) '/2 exy if j =  (x, y) (5.18) 

Note that if qe(., .) is as in Example 1, then Vj is independent of ft. Then 
we have 

[H, Vii = -wjVj, j ~ J  (5.19) 

where 

wj= U(y) -  U(x) (~>0) if j =  (x, y) (5.20) 

For each positive fl, define L~ by 

Ln(A) :=  E {(V*AV;-�89 A]+) 
j ~ J  

+exp(- f lwj ) (VjAV*-I[v jV* ,A]+)}  (5.21) 

L n satisfies the quantum detailed balance condition with respect to #~. 

P r o p o s i t i o n  5.1. For any complex-valued function f on X, we 
have 

Ln( D(f)  ) = D( Ls.ct (f)  ) (5.22) 



Simulated Annealing 349 

where L~ is given by (5.21) above and where L~,ct is the classical generator 
given by (4.12). 

Proof. We have 

L~(D(f))= ~, Z {(V*ez~Vj-�89 ez~]+) 

Changing 
obtain 

L~(D(f))= ~ x  ~ {y:~y< ~ qp(x, y ) [ f ( y ) -  f (x)]  

+ ~ e x p [ - f i ( U ( y ) -  U(x))] q~(y, x ) [ f ( y ) - - f ( x ) ] }  
y : y > x  

= ~ ~ qe(x, y ) [ f ( y ) - f ( x ) ]  exx 
x ~ X  y : y r  

= D(LI~,~,(x)) I 

j E J  z c X  

+ exp( - flW/)( Vjezz V* - l[ Vj V*, e~z] + ) } f (z)  

= Z Z {qe(Y, X) eyy(a=x-a=y) 
x , y : x <  y z ~ X  

+ exp[-f i (U(y)  - U(x))] q~(y, x) ex~(a~y - 6=)} f (z)  

x into y and y into x in the first line and recalling (4.6), we 

The generator G B on K corresponding to 
0 t G~ = G~ - G~, where 

exx 

- L ~  can be written as 

(5.25) 

Let l be the maximum energy gain in one step: 

l '=  max{U(y) -U(x ) :x ,  y ~ X , x < y ,  qe(x, y)>O} (5.26) 

r 1 e - p r o  ~ F c l ( ~ )  ~ Fa e --~m 

The classical generator G~,d corresponding to -Lr can be obtained by 
D(Ge,,.,(f)) = G~(D(f)) for all f 

The estimates on the spectral gap for G~ can be obtained as follows. 
Let F1, F2, rn be the constants such that the spectral gap Fcl([l ) for G~,cl 
satisfies 

0 1 Geu = ~ ~ q~(x, y)[exx, u] + (5.23) 
x , y : x #  y 

G'~u = ~ {exp [ - f l (U(y ) -  U(x))/2] qe(x, y) 
x , y : x <  y 

x (eyxuexy + exyUeyx) } (5.24) 
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T h e o r e m  5.2. Let 

m* := max{m, l} (5.27) 

F* := min{F~, ~ } (5.28) 

where ~ > 0 has been introduced in assumption (iii) of Section 4. Then the 
spectral gap F(/~) for Gr satisfies the bound 

F*e -~m* <~ F(~) ~ F2e ~m (5.29) 

Proof. Let F be the orthogonal projection of ~(( onto the subspace of 
diagonal matrices, given by 

Fu = ~ e~ue~,  u ~ X (5.30) 
x ~ X  

We have, clearly, 
0 0 G~F=FGe, G'~F=G'~=FG'p (5.31) 

so that both F •  and ( 1 - F )  oU are globally invariant under S~= 
exp( -  G~ t). On F~(, "~ the generator G~ coincides with the classical generator 
G~.ct. On (1 - F )  Jr G~ reduces to G~. Note that G~ is strictly positive and 
satisfies the bound 

G~>min{  ~ q~(x,y)} 
x ~ X  y : y r  

~>min {e-/~l ~ max{q~(x,y),q~(y,x)}}>je-~l~l (5.32) 
x ~ X  y : y ~ x  

since, for any given x, at least one q~(x, y) (y ~ x) must be nonzero, by 
irreducibility of q~(-,.). The conclusion follows. II 

From the above discussion we can conclude that the same results as 
in Theorems 4.1 and 4.2 [-cases (a) and (b), respectively] hold also in the 
present quantum framework, provided m is replaced by m*. This conclu- 
sion is formulated as follows. 

Theorem 5.3. Suppose that assumptions (i)-(iv) of Section 4 hold. 
Let ~(Sk)=(1/c)log(sk+ 1), k =  1, 2,..., where c>m*. Let Lp be given by 
(5.21). Then, for any state/~' on J/g=M(N, C) we have in case (a) 

lim /~'(T~ ~-- ~n A = = �9 Tt,( )) 0 foral lAsuchthaty~(A*A)  0 (5.33) 
n ~ o Q  

and in case (b) 

l ina #'(T~I...  T~t;(A)) = #oo (A) for all A (5.34) 
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A P P E N D I X  

Here I prove the inequality 

F1 e ~m<F(fl)<~F2 e ,m 

Since this is a slight generalization of Lemmas 2.3 and 2.7 of ref. 19, I shall 
assume that the reader is familiar with those proofs and shall insist only on 
the (minor) changes that I have introduced. Recall that 

where 

E~( f , f ) -=  ~ ea(x, y ) I f ( x ) - f ( y ) [  2, f ~ S 
x , y ~ X  

e~(x ,  y ) ' -  - -  
1 

exp t- - fill(x)] q~(x, y) 
2NZ(fl) 

= ea(y, x), x, y e X 

Upon defining (as in ref. 19) 

Vary(f)  " = / ~ ( ] f -  #r 2) 

= [2NzZ(f )2]  -1 
x, y E X  

we have 

exp[ - f l (H(x)  + H(y) ) ]  If(x) - f(y)l  2 

F(fl) = inf{E~(f, f)/Var~(f): f e  J/l, Vary(f)  r 0} 

Then we have to prove the following inequalities: 

Var~(f)<<. CePmEt~(f,f), f eJ/g, Be(O, oo) 

for some constant C (to be identified with l/F1), and 

E~(F, F)<~Fze-~mVar~(F), fie(O, oo) 

for some function F~ J///. 

(A.1) 

(A.2) 

Proof of (,4.1). For any pair x, y of points in X, choose a path pXy 
from x to y on which m(x, y) is attained. The length n(x, y) of any path 
is bounded above by some number (say) n. For z, w in X, let (19) 

if, for some i, p~'Y = z and p~'~_ 1 = w 

otherwise 
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[Zz, w(x, y) depends also on the path pXy chosen]. Then, as in ref. 19, we 
have 

1 
Vary(f)  = 2N2Z(fl)2 ~" Z~,~(x, y ) I f ( z ) -  f(w)] 2 

X , y , z ,  w E X  

x exp[ - f l (H(x)  + H(y) ) ]  (A.3) 

Multiply and divide each nonzero summand in (A.3) by e~(z, w). [Note 
that if e~(z,w)=O, then also ;(~,w(x,y)=0].  Writing e~(z,w) as 
[2NZ(f l )]- lexp[- f lH(z)]q~(z ,w)  and recalling that, for the path 
chosen, H(p:[ y) - H(x) - H(y) <~ m(x, y) <~ m, we obtain 

Zz, w(X, Y) exp[ - f l (H(x)  + H(y) ) ]  ~< exp(flm) Lw(X, y) 
2N2Z(fl) 2 e~(z, w) NZ(fl) qp(z, w) 

(A.4) 

Similarly, writing e~(z, w) as [2NZ(fl)]-I e x p [ - f l H ( w ) ]  q~(w, z) and 
recalling that, for the path chosen, H(p xy ~) - H(x) - H(y) <<. m(x, y) <~ m, 
we obtain 

Zz,,,(x, y ) exp[ - f l (H(x )+  H(y))] <exp(flm) Z=,w(X, y) (A.5) 
2N2Z(fl) 2 e/3(z, w) UZ(fl) qfl(w, z) 

It follows from assumption (iii) that 

min {1/q~(z, w), 1/q ~(w, z): q~(z, w) # 0 }  ~< 1/~1 

Then we insert into (A.3) the more restrictive of the inequalities (A.4) and 
(A.5), and recall that Z(fl)~>lim~ ~ Z(fl)= card(S~ So we obtain 

F/C tim 

Var~(/)  ~< ~ ~ Z Xz, w(x, y) eft(z, w) 
card(S ~ cq x, & w a x  y E X  

x [ f ( z ) -  f(w)[ 2 

Since X is finite, Zx.y~x )s y) is bounded by a constant, independent 
of z, w, and ft. Then (A.1) follows, with 

z, w x ,  y 

Proof of A.2. Let x, y be two points such that m(x, y)=m. Let A be 
a subset of X containing y and not containing x, and let F be its indicator 
function. Then 

Vary(F) ~> [N2Z(fl) 2] 1 exp[ - f l (H(x)  + H(y) ) ]  (A.6) 
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On the other hand, we have 

E~(F, F)= [NZ(fi)] 1 ~ ~ exp[ - f iH(z ) ]  q~(z, w) 
z C A  wEA 

<~ c~2[NZ(fi) ] ~ ~ exp[ - f i l l ( z ) ]  (A.7) 
zq~ A,w~ A:qfl(z,w)> O 

Recalling that Z(fi) ~< 1, we obtain from (A.6) and (A.7) 

E~(F, r)/Var~(F) <~ ~2N ~ exp[ -fi(H(z) - H(x) - H(y))]  
zr  w)>0 

It follows from ref. 19, Lemma 2.3, that we can choose A such that 

H ( z ) - H ( x ) - H ( y ) > . m ( x , y )  for zC-A,w~A,q~(z,w)>O 

By assumption, m(x, y)= m. Then we obtain 

E~(F,F)/Var~(F)<~c%Ne ~mcard{(z,w):zq~A, wEA, q~(z,w)>O} (A.8) 

Since X is finite, the cardinality of the set in (A.8) is some finite constant, 
which is independent of fi by assumption (iii). The claim follows. | 
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